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We present upper bounds on the critical temperature of one-dimensional Ising 
models with long-range, l/n ~ interactions, where 1 < cr ~< 2. In particular for the 
often studied case of cr = 2 we have an upper bound on T c which is less than the 
T,. found by a number of approximation techniques. Also for the case where 
is small, such as a = 1.1, we obtain rigorous bounds which are extremely close, 
within 1.0%, to those found by approximation methods. 
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1. I N T R O D U C T I O N  

F o r  s o m e  t ime it has been k n o w n  that  f e r romagne t ic ,  one -d imens iona l  

Ising spin sys tems have  a phase  t rans i t ion  if the in te rac t ion  s t rength  falls 

off s lowly enough .  In pa r t i cu la r  if we cons ide r  Ising spins, s = _ 1, g iven by 

the H a m i l t o n i a n  

J 
= - i~<j l i - j l  ~ sisj  - ~ h,s ,  (1) 

where J > 0 ,  h;~>0, and  [ i - j J  is the d is tance  be tween  the i th  and  the 

j t h  sites with the d i s tance  be tween  nearest  n e i g h b o r  sites set equa l  to one,  
then D y s o n  11"21 p roved  there  exists a phase  t rans i t ion  for 1 < c r  F o r  

> 2 there  is no  phase  t r ans i t i onJ  31 T h u s  ~ = 2 is the cri t ical  p o w e r  and a 
del icate  case for analysis.  F roh l i ch  and  Spencer  ~41 gave  the first p r o o f  of  

the exis tence of  a phase  t rans i t ion  for this case. M o r e  recent ly A i z e n m a n  
eta l .  15~ and Imbr i e  and  N e w m a n  t61 have  ex tended  and sha rpened  m a n y  
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results for the ct = 2 case. Of particular interest for this paper is the following 
dichotomy proven in ref. 5: 

either M = 0 or ~,.JM'- >1 1/2 (2) 

where M is the spontaneous magnetization for the system and /~ = 1/kT. 
The actual statement of ref. 5 considers q-state Potts models and hence is 
more general; however, we consider only the Ising (q = 2) case. 

In this paper we establish rigorous lower bounds on/3,, for the above 
model. Particular attention is paid to the case ct = 2 and to the opposite 
end of the ct range, i.e., when ct is in the range 1.0 < ct ~< 1.2. In the latter 
case we can use a method due to Vigfusson ~7~ or one due to the present 
author  ~8~ to obtain the bounds. Both have been used previously for only 
the ct = 2 case. However, both can be shown to be very effective when 
applied to those systems where the interaction falls off very slowly. For  the 
case of a = 2 we use the method of Vigfusson along with the d ichotomy 
presented in (2) to improve significantly upon previous bounds. In both 
cases we compare our bounds not only to previous bounds, but also to a 
number  of results based on a variety of approximation techniques and in 
both cases our rigorous bounds are strong enough to rule out some of the 
approximation results. One motivation for presentation of these results is 
to establish some good rigorous bounds to which approximation results 
can be compared. 

Besides the d ichotomy presented above we need the following theorem 
of Vigfusson. 

T h e o r e m .  If, in (1), a pair coupling is replaced by a coupling of 
the individual spins to local external fields m i and mj through a term 
( J / l i - j l ' ) ( s ~ m j  +.~jmi), and the mi and m i are chosen such that they satisfy 
m~> <s~> and mi~> <sj> (as calculated in the new system), then for any k, 
<sk > in the new system is larger than or equal to its value in the original 
system. 

The brackets around s~, si, and sk in the theorem denote the usual 
thermal average. The statement of the theorem can be made more general 
than the above statement but this is unnecessary for the present applica- 
tion. For  both the more general statement and the proof  see Vigfusson. ~9~ 

2.1. 0 < a ~ < 1 . 2  

We begin with the case of ~ small and present only the Vigfusson 
method. For  ct small the method presented in ref. 8 basically duplicates the 
bounds achieved using Vigfusson's method and requires about  the same 
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amount  of computa t ion to achieve the bounds. Therefore these results will 
not be presented. 

To make use of the theorem presented in the introduction one needs 
to substitute for enough of the pair interactions in (1) to result in a system 
where one can readily compute  the <si)  and check that mi>~ <s;> for all 
i. Then one needs to find the greatest/~J such that rn~> <s~) remains valid 
as mi-- '  0, thereby assuring that <s~> --* 0. Vigfusson presents one approach 
in ref. 7. There he substitutes for the pair interactions in such a way that 
the system is reduced to a chain of spins with the structure shown in 
Fig. la. The structure of the chain is such that any <s~> can be calculated 
by knowing the eigenvalues of a 2 x 2 transfer matrix (for more details see 
ref. 7). For  a small unit cell, such as the four-site unit cell shown in Fig. la, 
the elements of the transfer matrix can be obtained by hand. For  larger 
cells one can make use of one of the symbolic manipulat ion programs 
available. Vigfusson for the ~ = 2 case used unit cells containing up to 20 
sites. For  our  calculations with 1.0 < ~ < 1.2 we have only gone to unit cells 
containing 12 sites. One will see that for c~ in the range we are considering, 
by the time one considers 12-site unit cells one has very good bounds and 
going to larger cells will not improve them significantly. 

We present results based on two methods in handling the fields rn~. In 
one case we consider only a single mean field rn and then require rn > <s,.> 
for all i. This simplifies the calculations and was the procedure used by 
Vigfusson for his 1/n 2 results. For  our  other results we use the full proce- 

(a) 

(b) 
Fig. I. (a) Replacement of pair interactions to the point where one has four-site unit cells. 
Local magnetic fields h, and h, replace the deleted pair interactions. (b) Replacement of pair 
interactions to the point where one has independent four-site clusters. Here local magnetic 
fields h~ and h;_ replace the deleted pair interactions. 
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Table I. B o u n d s  and  Approximations for IBcJ f o r  o = 1.1 and  1.2 

Bounds 

~t= 1.1 ~ = 1 . 2  

Unit cell Procedure 1 Procedure 2 Procedure I Procedure 2 

4-site fl,.J >~ 0.04748 f l J  ~> 0.04749 fl,.J~> 0.09110 f l J  >~ 0.09117 
8-site f l ,J  ~> 0.04751 fl, J ~ O . 0 4 7 5 2  fl, J~> 0.09136 f l , J  >~ 0.09147 

12-site fl,.J ~> 0.04752 f l , .J>~O.04753 fl,.J ~> 0.09144 fl,.J ~> 0.09162 

Approximations 

~t= 1.1 ct = 1.2 

Bethe lattice fl i ~ fl , .J ~ 0.0477 f l , .J ~. 0.0927 
Series expansions 1~2b - -  fl , .J -~ 0.0919 
Cluster mean-field 113~ fl,.J ~_ 0.0478 fl , .J ~ 0.0934 
Coherent anomaly method I J4j fl , .J ~. 0.0473 f l , .J .~ 0.0927 
Finite-range scaling c15) fl , .J ~ 0.0505 fl,.J ~ 0.0923 

dure with differing m ,  Naturally this results in better bounds, but at the 
cost of much more complicated calculations. We present both results in 
Table I so that one can see the amount of improvement one obtains using 
the full procedure. Along with our rigorous bounds we give the results of 
five different approximations for the critical ill/. The results based on 4-, 8-, 
and 12-site unit cells are given. One sees that even the 4-site unit cell gives 
relatively good bounds in this region of small ~c One also sees that the 
rigorous bounds are very close to the values found by approximation. The 
method becomes less effective as ~ increases. 

3. a = 2 . 0  

The case of ~t = 2.0 has been by far the most studied case. Vigfusson, 
using the theorem in the introduction and the transfer matrix method dis- 
cussed in the previous section, produced the best bound in a long series of 
rigorous bounds, establishing fl,.J>0.441. With the results of Aizenman 
et al. ~5~ one has immediately that fl,.J>~ 0.500 from (2). Vigfusson required 
that as fl--.fl , ,  the spontaneous magnetization M--*0, but from the 
dichotomy given in (2) one need no longer require that M ~ 0 as fl ~ fl,., 
but rather require that fl, J M  2 >~ 1/2. In other words, one wants to find the 
greatest fl such that flJM2>~ 1/2 while still requiring mi>~ ( s i )  for all i. 
This allows for a significant improvement in the bounds one can obtain 
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Table II. Bounds and Approximations for ~cJ for  o - - 2 . 0  

1509 

Bounds Approximations 

Transfer matrix 
4-site fl, J >>- 0.59229 Bethe lattice q~2~ f lcJ  ~- 0.658 
8-site fl, J ~> 0.60004 Matvienko q 15~ fl,.J .~ 0.657 

12-site fl,.J >t 0.60504 Monte Carlo c 16) tic J -~ 0.630 
16-site - -  Renormalizat ion group 117~ fl,.J ~ 0.615 
20-site - -  Series Expansion m~ fl,. J ~ 0.612 
24-site - -  Finite-range scaling c 14~ fl~J ~- 0.596 

Cluster ~-Function I ~ [3,.J ~ 0.590 
4-site f l , J  >1 0.58517 Coherent anomaly ~31 fl,.J ~. 0.57 l 
8-site fl,.J >1 0.59643 Variational method ~19~ f lcJ-~ 0.500 

12-site fl, J >1 0.60237 Mean-field f l , J  ~- 0.313 
16-site fl, J/> 0.60626 
20-site fl, J >1 0.60909 
24-site fl, J/> 0.61128 

using the theorem given in the introduction.  Again using the transfer 
matrix approach of the previous section, results for the 4-, 8-, and 12-site 
unit cells are given in Table II. In addit ion to these results we present the 
bounds based on what we denote as the cluster method. Here we replace 
the pair interactions to a point  where we have a collection of independent  
clusters each with n sites; see Fig. lb. In this procedure we do not need to 
deal with a transfer matrix and most important ly  taking derivatives of the 
matrix elements in order to calculate the necessary thermal averages. This 
has allowed us to go to clusters containing up to 24 sites. The results one 
obtains using this method are also presented in Table II. Finally Table II 
also presents the approximate value of f l , . J  from a large variety of methods. 
It is worth not ing that our improvement  in bounds  has resulted in a situa- 
tion where approximately half of the approximations are seen to give 
values for f l ,  J which our bounds show to be too low. 

4. CONCLUSION 

We see from the above that a straightforward use of the method of 
Vigfusson, previously used only for the ~ -- 2.0 case, results in what are very 
good lower bou~nds on f l , J  for the case where the interaction falls off very 
slowly. In addition, for the intensely studied ct = 2.0 if Vigfusson's method 
is combined with the dichotomy of (2) one can likewise achieve very good 
lower bounds  on fl,J. In both cases the bounds  can be used as a test for 
the previously employed approximat ion methods to obtain fl,.J. 
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